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a b s t r a c t

This paper concerns the way in which a static force can dramatically change the

dynamic behaviour of a harmonically excited quasi-zero stiffness single-dof system. The

primary resonance response of the system is considered using the harmonic balance

method and the results are verified numerically. It is found that the system changes its

characteristic and finally to a purely softening characteristic as the static force increases

from zero. Consequently for certain values of the static force multiple jumps can occur.

Five different cases of a possible response are distinguished and related to the values of

the static force. It is also found that just one harmonic is required to qualitatively

describe the behaviour of the system. The inclusion of a second harmonic in the solution

does result in changes to the response, especially the softening behaviour, but overall it

has a small effect for the system parameters chosen in this paper, which is

representative of a quasi-zero stiffness isolator. The influence of damping is also

considered.

& 2009 Published by Elsevier Ltd.
1. Introduction

A single-dof oscillator with no linear stiffness and with hardening cubic nonlinearity is considered in this paper. Such a
stiffness characteristic corresponds to a system with zero dynamic stiffness, a so-called quasi-zero stiffness (QZS)
mechanism [1]. QZS mechanisms have wide application. They are used in space research to simulate zero gravity [2], and in
geodynamics for seismographs or gravimeters [3,4]. Their use is beneficial for vibration isolation as well [1,5–8].

The equation of motion of the system considered is given by

€yþ 2z_yþ gy3 ¼ f 0 þ f 1 cos Ot, (1)

where y, z, g, f0, f1 and O represent, respectively, the non-dimensional variables of displacement, damping ratio, coefficient
of the cubic nonlinearity, constant force and the amplitude and frequency of the harmonic excitation force; overdots denote
derivatives with respect to non-dimensional time t.

The mathematical model of this QZS mechanism coincides with the model of an electric circuit, containing an inductor.
The nonlinear characteristic of the inductor is such that the relationship between the current and the flux is nonlinear and
has the same form as the restoring force in Eq. (1) [9]. While studying this system, but for the case of a fixed value of f0 and
g ¼ O ¼ 1, Hayashi [9] showed analytically and confirmed experimentally that multi-valued steady states exist for certain
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values of z and f1, which results in the appearance of multiple jumps. Hayashi’s findings were extended in Ref. [10] for the
case Oa1, and for a weakly (g ¼ 0:0783) and strongly nonlinear system (g ¼ 3:7033), which are the cases relating to a
configuration of a nonlinear QZS isolator [8]. In Ref. [10], the harmonic balance method (HBM) was applied to obtain the
first approximation of the steady-state periodic solution. The numerical simulations showed that if z and g are fixed, the
number of the steady-states ranges from one to five, depending on the combinations of values of f0 and f1. It was also shown
that combinations of f0 and f1 influence the number of jumps in the frequency-response curves (FRCs).

Multiple jump phenomena leading to reproducible hysteresis have been recognized in the behaviour of different
nonlinear systems: the ultraharmonic resonance response of a system with an asymmetrical restoring force characteristic
excited by a centrifugal exciting force [11], forced dynamics of a suspended cable [12], the response of atomic force
microscopy cantilevers tapping on a sample [13], parametric resonance in electrostatically actuated microelectromecha-
nical oscillators [14], large-amplitude vibrations of rectangular plates with geometric imperfections [15], the response of
the fundamental mode shallow shells with a different shape of the boundary [16]. However, as far as the authors are aware,
the appearance of these phenomena in the primary resonance response of the oscillator described by Eq. (1) has only been
considered by Hayashi and in the previous work by the authors [10].

The analysis in this paper builds on that reported in Ref. [10], focusing on the influence of the constant force f0 on the
response of the system for a fixed value of the magnitude of the harmonic excitation force f1. The main goal is to find the
critical values of f0 for which there is a change in the shape of FRCs and hence the number of jumps. In Section 2 some
existing results from the literature are given with regard to their application to the system described by Eq. (1). Their
limitations and deficiencies are emphasized, giving the clear reasons and motivation for this study. To help the reader,
Section 3 contains some of the results given in Ref. [10], which concerns the approximate steady-state solution of Eq. (1)
obtained by the HBM. In addition, in this section the corresponding stability regions are determined, as well as a
bifurcation set relating to a saddle-node bifurcation. In Section 4 the effects of various values of the constant force on the
response of the system are considered and a physical explanation for those effects is given. The effects of damping are
analysed in Section 5. Section 6 contains conclusions. There are also two Appendices. Appendix A considers the effect of
including a second harmonic on the steady-state response and also the total harmonic distortion on the primary resonance
curve. Appendix B contains the Supplementary data associated with this article, which can be found in the online version.

2. On the motivation

The system with a constant and harmonic force applied and with odd geometric nonlinearity is known as the
asymmetric Duffing oscillator. The asymmetric Duffing oscillator described by Eq. (1) can be transformed into another
asymmetric oscillator with quadratic and cubic nonlinearity

z00 þ 2ẑz0 þ zþ b̂z2 þ ĝz3 ¼ f̂ 1 cos Ôt̂, (2)

where

z ¼ y�
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3

s
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zffiffiffiffiffiffiffiffiffiffiffiffiffi
27gf 2
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27f 2
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with primes denoting differentiation with respect to t̂.
The second-order method of multiple scales is used in Ref. [17] to demonstrate that a general oscillator with quadratic

and cubic nonlinearity (2) has a backbone curve

Ôb1 ¼ 1� k1a2
0; k1 ¼

10b̂
2
� 9ĝ

24
, (4)

where a0 is the steady-state amplitude of the first harmonic and Ôb1 stands for the corresponding frequency. The backbone
curve has only one vertical tangent, indicating that the response of the system can be either softening (k140) or hardening
(k1o0).

By using Eqs. (3c) and (3d), one obtains that k1 ¼ 7=24
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g2=f 2

0
3
q

, which indicates that, regardless of the value of the
constant force, the response of the oscillator (1) is softening. This conclusion is, however, misleading and it holds just for a
particular ordering of the system parameters, as will be demonstrated later.

To describe correctly the dynamic behaviour of an elastic cable under planar excitation at large amplitudes, Benedettini
and Rega [12] used the fourth-order method of multiple scales to obtain the expression for the backbone curve, the
corresponding frequency of which is labelled by Ôb2 and it is given by

Ôb2 ¼ 1� k1a2
0 � k2a4

0; k2 ¼
1940b̂

4
� 6228b̂

2
ĝþ 405ĝ2

6912
. (5)
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They found that when the cubic nonlinearity in Eq. (2) is dominant, the response is hardening with little difference to the
Duffing oscillator. They also showed that, since the backbone curve (5) can have two vertical tangents, the branches of the
FRC bend in such a way that the response is softening at low amplitudes and becomes hardening as the amplitude
increases, with the maximum or three or five steady-state solutions.

By using Eqs. (3c) and (3d), one calculates that k2 ¼ �91=6912
ffiffiffiffiffiffiffiffiffiffiffiffiffi
g4=f 4

0
3
q

, leading to the conclusion that the backbone
curve can have two vertical tangents so that, consequently, the oscillator (1) can exhibit a mixed nonlinear response.
However, the conclusion found in Ref. [12] cannot be directly applied to the oscillator (1), because they refer to the elastic
cable for which the coefficients of quadratic and cubic nonlinearity are mutually dependent, while the damping coefficient
and the magnitude of the excitation force can have arbitrary values. By analysing the coefficients in Eqs. (3b–e) of the
oscillator described by Eq. (2) corresponding to the oscillator in Eq. (1), it can be seen that all the coefficients are coupled.
Thus, a more general analysis is required. This analysis is, therefore, aimed at finding the values of the constant force for
which the response changes from hardening to softening, as indicated below, with all possible shapes of the FRCs, the
number of steady states and jumps distinguished.

3. Amplitude–frequency response

An approximate solution corresponding to the steady-state response in the region of the primary resonance is sought by
the harmonic balance method. It is assumed as the sum of a bias term and first harmonic [10] (the solution containing the
second harmonic term is discussed in Appendix A)

yðtÞ ¼ A0 þ A1 cosðOt þ yÞ. (6)

Substituting Eq. (6) into Eq. (1) and equating constant terms and setting the coefficients of the terms containing cos Ot and
sin Ot separately to zero, the system of coupled nonlinear algebraic equations, in terms of a bias term A0, the amplitude of a
harmonic term A1 and phase y is found to be

Y1 � gA3
0 þ

3

2
gA0A2

1 � f 0 ¼ 0,

Y2 � �A1O
2
þ 3gA2

0A1 þ
3

4
gA3

1 � f 1 cos y ¼ 0,

Y3 � �2zA1O� f 1 sin y ¼ 0. (7a2c)

Eqs. (7a–c) can be combined to give the implicit equation for the frequency-response function of A0:

X9

i¼0

biA
i
0 ¼ 0, (8)

where

b0 ¼ �f 3
0; b1 ¼ 4f 2

0O
2; b2 ¼ �4f 0O

2
ðO2
þ 4z2

Þ; b3 ¼ 3gð2f 2
1 � 3f 2

0Þ,

b4 ¼ 16gf 0O
2; b5 ¼ 4gO2

ðO2
þ 4z2

Þ; b6 ¼ �15g2f 0,

b7 ¼ �20g2O2; b8 ¼ 0; b9 ¼ 25g3. (9a2k)

It is shown in Ref. [10] that the coefficients of the polynomial in Eq. (8) are such that for different values of z, g, f0 and f1 the
system can have a maximum number of five, three or one steady-state value for one value of frequency O, i.e. it can
experience multi-valued steady states.

To find the stability limits of the steady states on the resonance curves, use can be made of the determinant D ¼ jqYi=qyjj;

where i ¼ 1;2;3; yj 2 fA0;A1; yg, and Y1, Y2, Y3 are defined by Eqs. (7a–c):

D ¼ � 3gA2
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2
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1
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1
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1
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3
75. (10)

When D ¼ 0, there is a stability limit and a saddle-node bifurcation occurs.
The occurrence of the jumps in the system response is associated with a saddle-node bifurcation and vertical tangency

of the FRC [18]. To find the locations of the vertical tangents, Eqs. (7b) and (7c) are squared and then summed to give:

A2
1 � B ¼ f 2

1, (11)

where B ¼ ðO2
� 3gA2

0 � ð3=4ÞgA2
1Þ

2 þ 4z2O2.
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Eq. (11) can be differentiated with respect to A2
1 to give

df 2
1

dA2
1

¼ O2
� 3gA2
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gA2
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16
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A2
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A2

1
2
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Since df 2
1=dA2

1 ¼
ffiffiffi
B
p
ðdf 1=dA1Þ, if Eq. (12) is equal to zero, then df 1=dA1 is also equal to zero. Further, it has been shown that

the last condition implies dO=dA1 ¼ 0, which is the condition for a vertical tangent (see, for example, [9]). Thus, setting
Eq. (10) to zero defines the condition for a vertical tangent. Comparing Eq. (12) with Eq. (10), it is seen that if the expression
in Eq. (12) is equal to zero, then D ¼ 0. This confirms that the FRC has a vertical tangent at the stability limits, where saddle-
node bifurcations occur. When these limits are known, stable and unstable parts of the regions of FRCs between two
vertical tangents are determined from the stability condition for the second unstable region of the linearized variational
equation, which has the form of Hill’s equation [10].

The approximate saddle-node bifurcation set in terms of f0 and O, when the other parameters are fixed, is calculated
from Eqs. (7a–c) and shown in Fig. 1a. It consists of two pairs of bifurcation curves: BA and AC, meeting at a cusp bifurcation
point A, and QP and PR, meeting at the other cusp P. These bifurcation curves indicate how the fixed points are created or
annihilated. The change in the number of the fixed points is also denoted in this figure. On the curves AB and QS (red solid
line) the saddle-node bifurcation occurs that corresponds to the coalescence of two fixed points (one stable and one
unstable) when one fixed point exists. Their disappearance is related to the curve AS, TC, and RT (red dashed line). The
curve SP (blue dotted line) depicts the situation when there is a bifurcation from three fixed points (two stable and one
unstable) to five (three stable and two unstable). Along ST and TP (blue dashed–dotted line) the opposite holds—one stable
and one unstable fixed point disappear. At the cusps A and P, a further degeneracy occurs and there is a multiply repeated
Fig. 1. (a) An approximate saddle-node bifurcation set in the (O, f0) plane for z ¼ 0:025, g ¼ 0:0783 and f 1 ¼ 0:1: bifurcation from one to three fixed points

(red solid line), bifurcation from three to one fixed point (red dashed line), bifurcation from three to five fixed points (blue dotted line) and bifurcation

from five to three fixed points (blue dashed–dotted line). Regions labelled by I–V correspond to the Cases analysed in Section 4 and (b) a numerically

computed saddle-node bifurcation set (green line – � �–). (For interpretation of the references to the colour in this figure legend, the reader is referred to

the web version of this article.)
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root. Fig. 1b shows saddle-node bifurcation curves computed numerically. They confirm that the behaviour of the system is
captured reasonably well by the theoretical results given in Fig. 1a. Generally, Fig. 1 indicates that depending on the values
of f0 there can be from two to four saddle-node bifurcations and the system can experience two to four jumps. Depending
on this number and the maximum number of steady states and the number of jumps when frequency is increased or
decreased quasi-statically, the (O, f0) plane in Fig. 1 is divided into five regions labelled by I–V. The shapes of the FRCs
relating to them are considered in the next section.

4. On the shape of the FRCs

4.1. Influence of the value of the constant force on the shape of the FRCs

To illustrate how the value of the constant force affects the shape of FRCs, these curves are plotted in Figs. 2–6 for five
distinguishable cases (Case I–V). The magnitude of harmonic excitation is held fixed f 1 ¼ 0:1, as are the parameters
z ¼ 0:025 and g ¼ 0:0783, while the value of the constant force is increased. In order to assure a consistent accuracy of an
assumed solution obtained by the HBM, the combinations of parameters are chosen in such a way that they lead to the
response in which higher harmonics are negligible in comparison to that given in Eq. (6). The results from the stability
analysis are also shown in Figs. 2–6, where the dashed parts of the FRCs represent the unstable regions. In addition, the
equation of motion (1) was solved numerically and the bias term, and the amplitude and phase of the first harmonic were
calculated from the Fourier series coefficients of the steady-state response. They are depicted in Figs. 2–6 as circles,
confirming that the analytical results qualitatively capture the behaviour of the system. An additional quantitative
confirmation of the validity of the assumed solution is given in Appendix A, which discusses the effect of including the
second harmonic in the response and the total harmonic distortion. The dashed–dotted lines in Figs. 2–6 are for the
primary resonance curve when it is assumed that the solution consists of two harmonics, named as ‘the solution by
the HBMS’.

When the constant force is very small, which corresponds to Case I where f 0 ¼ 0:01, the FRC of the harmonic response is
bent to the right (Fig. 2), as is for a hardening Duffing oscillator [17]. The occurrence of one jump when the frequency is
increased or decreased quasi-statically can be seen. When the harmonic term experiences a jump-down, the bias term
experiences a jump-up and vice-versa. These jumps illustrate possible saddle-node bifurcations that can be detected from
Fig. 2. The intersection of the horizontal line f 0 ¼ 0:01 with the curves QS or RT enables one to predict the frequency at
which there is a jump in the response.
Fig. 2. Frequency-response curves of: (a) the bias term A0, (b) harmonic term A1 and (c) phase y, for the Case I, corresponding to z ¼ 0:025, g ¼ 0:0783,

f 1 ¼ 0:1 and f 0 ¼ 0:01; ‘–’ stable solution by the HBM; ‘– –’ unstable solution by the HBM; ‘o’ numerical solution; ‘ �– �–’ solution by the HBMS.
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Fig. 3. Frequency-response curves of: (a) the bias term A0, (b) harmonic term A1 and (c) phase y, for the Case II, corresponding to z ¼ 0:025, g ¼ 0:0783,

f 1 ¼ 0:1 and f 0 ¼ 0:2; ‘–’ stable solution by the HBM; ‘– –’ unstable solution by the HBM; ‘o’ numerical solution; ‘ �– �–’ solution by the HBMS. Points 1–3

refer to the analysis given in Section 4.2 and Fig. 8.

Fig. 4. Frequency-response curves: (a) the bias term A0, (b) harmonic term A1 and (c) phase y, for the Case III, corresponding to z ¼ 0:025, g ¼ 0:0783,

f 1 ¼ 0:1 and f 0 ¼ 0:4; ‘–’ stable solution by the HBM; ‘– –’ unstable solution by the HBM; ‘o’ numerical solution; ‘ �– �–’ solution by the HBMS.

I. Kovacic et al. / Journal of Sound and Vibration 325 (2009) 870–883 875
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Fig. 5. Frequency-response curves: (a) the bias term A0, (b) harmonic term A1 and (c) phase y, for the Case IV, corresponding to z ¼ 0:025, g ¼ 0:0783,

f1 ¼ 0.1 and f 0 ¼ 0:5; ‘–’ stable solution by the HBM; ‘– –’ unstable solution by the HBM; ‘o’ numerical solution; ‘ �– �–’ solution by the HBMS.

Fig. 6. Frequency-response curves: (a) the bias term A0, (b) harmonic term A1 and (c) phase y, for the Case V, corresponding to z ¼ 0:025, g ¼ 0:0783,

f1 ¼ 0.1 and f 0 ¼ 0:95; ‘–’ stable solution by the HBM; ‘– –’ unstable solution by the HBM; ‘o’ numerical solution; ‘ �– �–’ solution by the HBMS.

I. Kovacic et al. / Journal of Sound and Vibration 325 (2009) 870–883876
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When the constant force is increased to f 0 ¼ 0:2, a markedly different shape of FRC is observed (Fig. 3), corresponding to
Case II. The upper branch of the FRC of the harmonic response bends first to the left, experiencing a softening effect and then to
the right experiencing a hardening effect. Thus, the system experiences four jumps in its response: two jumps occur when
increasing frequency and two jumps when decreasing frequency. As a consequence, the system exhibits hysteretic behaviour.

The FRCs for f 0 ¼ 0:4, which is labelled as Case III, are given in Fig. 4. The upper branch of the FRC of the harmonic
response bends even more to the left, while the jump-up and jump-down points move towards higher frequencies. The
additional feature of this case is that there is a frequency region where five steady states exist. It corresponds to the
frequency range between the curves SP and ST in Fig. 1.

The FRCs corresponding to Case IV for which f 0 ¼ 0:5 are shown in Fig. 5. They are characterized by the fact that there is
a region of frequency for which five steady states exist, which corresponds to the frequency range between the curves SP
and TP in Fig. 1. In addition, it should be noted that the value of the jump-up frequency of the harmonic term on the left
branch is higher than the frequency at which the peak amplitude occurs. The system can exhibit one jump when the
frequency is increased and two jumps when it is decreased.

Finally, when the value of the constant force is significantly increased to f 0 ¼ 0:95, the FRC of the harmonic response is
bent to the left in a similar way to the response of a softening Duffing oscillator [17]. This Case V is plotted in Fig. 6. Again,
the system has one jump-up and one jump-down frequency.

To help the reader to visualize how the FRCs change from one typical shape to another one, an animation has been
created. The animation can be viewed in Supplementary data associated with this article in its online version the details of
which can be found in Appendix B.

4.2. The role of instantaneous stiffness on the shape of the FRCs

Eq. (7a) can be written as

1þ
3

2

A2
1

A2
0

�
f 0

gA3
0

¼ 0. (13)

The value of A0 at the frequency when the behaviour changes from softening to hardening (point 3 in Fig. 3) is the same
as when the backbone curve of the bias term changes from having a negative gradient to a positive gradient (see Fig. 3 in

Ref. [10]). The backbone curve for the bias term is given by Eq. (11) in Ref. [10], which is

O2
b0 ¼

5g
2

A2
0 þ

f 0

2A0
. (14)

The value of A0 required, can be determined by setting dOb0=dA0 ¼ 0 and solving to give

f 0

g
¼ 10A3

0. (15)

Substituting for f 0=g from Eq. (15) into Eq. (13) and rearranging givesffiffiffi
6
p

A0

A1
¼ 1. (16)
Fig. 7. The value of the ratio R01 ¼
ffiffiffi
6
p

A0=A1 evaluated at the frequency when the characteristic of the FRC changes from being softening to hardening.

This is given by point 3 in Fig. 3.
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Fig. 8. Graphs showing how the non-dimensional stiffness changes as a function of displacement: (a) point 1 in Fig. 3, (c) point 2 in Fig. 3 and (e) point 3

in Fig. 3. ‘o’ denotes the static displacement, ‘r’ denotes the displacement A0 due to the force f0 and ‘*’ the peak displacement either side of A0. Figs. (b), (d)

and (e) are the corresponding time histories of the stiffness over two cycles, K0 is the non-dimensional stiffness corresponding to point ‘r’ and K1, K2

corresponding to the peak displacements either side of A0 given by ‘*’.

I. Kovacic et al. / Journal of Sound and Vibration 325 (2009) 870–883878
The value of R01 ¼
ffiffiffi
6
p

A0=A1 was calculated numerically for f 0 2 ½0;0:5� and f 1 2 ½0;0:2� and is shown in Fig. 7. Three regions
are shown in the figure; the region where R01 � 1, which corresponds to when there is a change in the characteristic from
softening to hardening; the region when the harmonic displacement A1 is too small for a jump to occur; the region where
the system has only hardening behaviour.

To investigate further why asymmetry causes the characteristic of softening for low amplitudes of vibration and
hardening behaviour for large amplitudes of vibration, the instantaneous stiffness of the system is studied. Three cases are
examined corresponding to points 1, 2 and 3 in Fig. 3; the first is when the system has softening behaviour (point 1),
the second when the system has hardening behaviour (point 2) and the third when the system is on the boundary between
softening and hardening behaviour (point 3). The non-dimensional stiffness of the system for these cases is shown in
Figs. 8a, c and e. In these figures ‘o’ denotes the static displacement, ‘r’ the displacement A0 due to the force f0 and ‘*’ the
peak displacement either side of A0. The corresponding instantaneous non-dimensional stiffnesses are given in Figs. 8b, d
and f. The stiffness of the system due to the bias term is given by

K0 ¼ 3gA2
0. (17)

and the instantaneous stiffness at the extreme positions are given by

K1;2 ¼ 3gðA0 � A1Þ
2. (18a,b)

In the case shown in Fig. 8a, A1oA0, and as shown in Fig. 8b, the stiffness of the system increases compared to the stiffness
due to the bias term over one half of the cycle and reduces over the other half of the cycle. In this case the system behaves
as a softening system. In the second case, shown in Figs. 8c and d, A14

ffiffiffi
6
p

A0. In one half of the cycle the stiffness of the
system increases compared to the stiffness due to the bias term; in the other half of the cycle the stiffness first reduces until
it reaches zero, then it increases again until at its peak it is much larger than that due to the bias term alone. This system
behaves as a hardening system. In the third case shown in Figs. 8e and f, the system is on the boundary between the
softening system and the hardening system which requires that A1 ¼

ffiffiffi
6
p

A0.
The threshold instantaneous stiffness at the extreme position can be determined relatively easily. The instantaneous

stiffness at the extreme position of interest is given by Eq. (18b). Combining Eqs. (16)–(18b) gives the ratio of the stiffness at
the extreme position to that at the bias position when the system changes its characteristic from being softening to
hardening

K2

K0
¼ ð1�

ffiffiffi
6
p
Þ2 � 2:1. (19)

Thus if the stiffness at the extreme position (having passed through zero) is about twice the stiffness due to the bias term
alone then the system will behave as a hardening system.
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5. Influence of damping on the response of the system

5.1. The decrease of damping

In order to illustrate the influence of the decrease of damping on the shape of the bifurcation sets, they are plotted for
z ¼ 0:0125 (Fig. 9a) and z ¼ 0:00625 (Fig. 9b). Both parts of the figure are plotted for g ¼ 0:0783, f1 ¼ 0.1, and contain the
bifurcation sets obtained analytically (the legend is the same as that explained in Section 3 and below Fig. 1). It should be noted
that the bifurcation sets were also obtained numerically. Being very similar to the analytical ones, they are not shown in order
not to make Figs. 9 and 10 cluttered. It can be seen that the structure of the bifurcation sets shown in Fig. 9 is the same as the
one given in Fig. 1, with two pairs of bifurcation curves and two cusps. Because of that, all five cases labelled in Fig. 1 can also be
identified in Fig. 9, and scenarios of the appearance of jumps are equal to those described above. It can also be noted that the left
pair of curves and the corresponding cusp given in Fig. 9a slightly change with the decrease of damping, while the right pair is
more affected. The left curve of this pair comes closer to the left branch of the other pair, or, in other words, the curve QP from
Fig. 1 becomes closer to the curve AB from the same figure. It indicates that the frequencies at which jump-down and jump-up
occur are closer to each other. The right curve from the right pair is almost vertical, which means that the corresponding jump
occurs at approximately the same frequency regardless of the values the constant force: at O � 1 for z ¼ 0:0125 (see Fig. 9a)
and at O � 1:4 for z ¼ 0:00625 (see Fig. 9b). With the reduction of damping its cusp moves toward higher frequencies and
higher values of the magnitude of the constant force. In the special case, when damping is zero, it goes to infinity, since two
branches of the FRC do not meet. As a result, the curve PR from Fig. 1 shifts to the right-hand side, to infinity.
5.2. The increase of damping

The bifurcation sets illustrating the effects of the increase of damping on the onset of saddle-node bifurcations are given
in Fig. 10a for z ¼ 0:05 and in Fig. 10b for z ¼ 0:075. The rest of the parameters are held fixed at their previous values.
Fig. 9. An approximate analytical saddle-node bifurcation set in the (O, f0) plane for g ¼ 0:0783, f 1 ¼ 0:1: (a) z ¼ 0:0125 and (b) z ¼ 0:00625. Legend as in

Fig. 1.
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Fig. 10. An approximate analytical saddle-node bifurcation set in the (O, f0) plane for g ¼ 0:0783, f 1 ¼ 0:1: (a) z ¼ 0:05 and (b) z ¼ 0:075. Legend as in

Fig. 1.
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Comparing these figures mutually as well as with the bifurcation set given in Fig. 1, it can be concluded that the basic
bifurcation structure is crucially dependent on this change in the value of the damping ratio. First, the pairs of bifurcation
curves do not intersect each other, i.e. one does not cross over into the frequency region where the others occur.
Consequently, there is no region corresponding to five steady states, which implies that making the damping ratio higher
reduces the maximum number of the steady states. Second, the regions between the branches of each pair narrow down.
Finally, Fig. 10b shows that if the damping ratio is increased appropriately, there is only a small range of the values of the
constant force for which jumps can occur. For the majority of the values of the constant force from the range investigated,
there is no saddle-node bifurcation, i.e. the system does not experience jump phenomena, but does exhibit linear-like
behaviour, with FRCs that are single-valued functions. This implies that a suitable choice of damping can be used as a
passive mechanism to eliminate the occurrence of jumps in the system.
5.3. On the location of the upper cusp

It has been noted in Section 5.1 that the location of the lower cusp, which corresponds to the jump-down point on the
left branch of the FRC of the harmonic term, is slightly affected if damping is changed for the fixed values of the coefficient
of nonlinearity and the magnitude of harmonic excitation. However, the location of the upper cusp is affected more
significantly if the same change occurs. It was shown in Ref. [19] that the frequency corresponding to the jump-down point
of a classic Duffing oscillator actually depends on the ratio between the coefficient of nonlinearity and the square of the
damping ratio. To examine this dependence for the case of the asymmetric Duffing oscillator, the frequency corresponding
to upper cusp is calculated numerically for several values of the coefficient of nonlinearity (g ¼ 0.05; 0.0783 and 0.1) and
several values of the damping ratio (z ¼ 0.0125; 0.025; 0.05; 0.1 and 0.15). The results are presented as a function of the
ratio g=z2 in Fig. 11. The coinciding curves confirm that this jump-down frequency is dependent not only on the parameter
of nonlinearity g, but upon the ratio g=z2.
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Fig. 11. The frequency corresponding to the upper cusp calculated for several values of the coefficient of nonlinearity g ¼ 0.05 (red circle), g ¼ 0.0783

(blue square) and g ¼ 0.1 (green triangle) and several values of the damping ratio (z ¼ 0.0125; 0.025; 0.05; 0.1 and 0.15). In all cases f 1 ¼ 0:1. (For

interpretation of the references to the colour in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusions

The primary resonance response of a QZS single-dof oscillator subject to simultaneous constant and harmonic excitation
has been considered. The harmonic balance method was applied to determine the frequency-response equations. The
stability condition of the steady-state solution was obtained, as well as the approximate bifurcation set corresponding to a
saddle-node bifurcation. Numerical simulations confirmed that, although a relatively simple analytical approximation was
assumed, it was sufficient to capture the fundamental response of the system. It was found that the constant external force
causes asymmetry in the system, which results in the frequency-response curves having several different shapes
depending on the degree of asymmetry. When the constant force is very small or very large compared to the harmonic
force, the peak of the harmonic response is bent in a single direction—to the right or to the left, as it is for the response of a
hardening or softening Duffing oscillator. For the values of the constant force between these extreme cases, some
distinctive shapes of the frequency-response curves can occur. The upper branch of the harmonic response can have a
double bend. First, it bends towards lower frequencies, experiencing initial softening. Then it bends towards higher
frequencies, exhibiting subsequent hardening. These double bends can be with three or five steady-state values. The multi-
valuedness of these curves causes the occurrence of the multiple jumps in the system and hysteretic behaviour. However,
the system does not exhibit a jump phenomenon if the damping is high enough.
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Appendix A. On the consistency of the assumed solution

The equation of motion of the QZS oscillator (1) can be transformed into the equation with the quadratic and cubic
nonlinearity (see Section 2). It is shown in Ref. [17] that the quadratic nonlinearity brings the second harmonic into a
primary resonance response. Knowing this fact, one can assume that the solution of Eq. (1) contains the second harmonic
as well

y ¼ A0 þ A1 cosðOt þ yÞ þ A2 cosð2Ot þjÞ. (A.1)

By using the harmonic balance method, the unknown variables A0, A1, A2, j and y are found to satisfy (they are referred to
as ‘solutions obtained by the HBMS’):

gA3
0 þ

3

2
gA0A2

1 þ
3

2
gA0A2

2 þ
3

4
gA2A2

1 cosðj� 2yÞ � f 0 ¼ 0,
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Fig. 12. The total harmonic distortion p (%), where ‘D’ labels the total harmonic distortion when increasing the frequency; ‘*’ labels the total harmonic

distortion when decreasing the frequency: (a) Case I, (b) Case II, (c) Case III, (d) Case IV and (e) Case V.
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A0A2
1 sinð2y�jÞ ¼ 0. (A.2)

However, the approximate steady-state solution (6) of Eq. (1) is assumed in this paper as containing the first harmonic only.
Its consistency might be considered as questionable because of what is known a priori about the response.

In order to address this issue, Eqs. (A.2) are solved numerically for all five characteristic cases analysed in Section 4.1.
The results are shown in Figs. 2–6, together with the solutions obtained by using the first harmonic term only and the
corresponding equations (7a–c). It can be seen that the solutions obtained by the HBMS do not change the jump
frequencies on the right-hand side branches of the FRCs significantly. They do influence more the jump frequencies on the
left-hand side branches which are related to the softening behaviour and the effect of the quadratic term discussed above.
As a result of that, the corresponding saddle-node bifurcation set would be shifted slightly, but all five distinguishable
cases would still be recognized as in Fig. 1. This implies that the solution obtained by using the first harmonic term (6)
can be considered as an accurately consistent approximation as it qualitatively captures the behaviour of the system.
Quantitatively, it also gives reasonably accurate results, which is illustrated in Fig. 12. These graphs show the total
harmonic distortion for Cases I–V. The total harmonic distortion is defined as the total signal power in all the harmonic
distortion components divided by the power in the fundamental frequency, as a percentage p (%). From the numerical time
domain simulation, using ode45, this is estimated from

PN
k¼2jAkj

2=A2
1, where Ak is the Fourier series coefficient of the kth

harmonic and N the number of harmonics obtained, which is determined by the Nyquist frequency, which was set at 32 in
this case. The low level of distortion obtained was assured by a careful choice of the values of the system parameters.

Appendix B. Supplementary material

Supplementary data associated with this article can be found in the online version at 10.1016/j.jsv.2009.03.036.
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